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Self-consistent theory of rupture by progressive diffuse damage
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We analyze a self-consistent theory of crack growth controlled by a cumulative damage variabled(t)
dependent on stress history, in the quasistatic regime where the sound wave velocity is taken as infinite.
Depending upon the damage exponentm, which controls the rate of damagedd/dt}sm as a function of local
stresss, we find two regimes. For 0,m,2, the model predicts a finite-time singularity. This retrieves
previous results by Zobnin form51 and by Bradley and Wu for 0,m,2. To improve on this self-consistent
theory which neglects the dependence of stress on damage, we apply the functional renormalization method of
Yukalov and Gluzman and find that divergences are replaced by singularities with exponents in agreement with
those found in acoustic emission experiments. Form>2, the rupture dynamics is not defined without the
introduction of a regularizing scheme. We investigate three regularization schemes involving, respectively, a
saturation of damage, a minimum distance of approach to the crack tip, and a fixed stress maximum. In the first
and third schemes, the finite-time singularity is replaced by a crack dynamics defined for all times but which
is controlled by either the existence of a microscopic scale at which the stress is regularized or by the
maximum sustainable stress. In the second scheme, a finite-time singularity is again found. In the first two
schemes within this regimem>2, the theory has no continuous limit.

DOI: 10.1103/PhysRevE.63.066129 PACS number~s!: 81.40.Np, 05.70.Jk, 64.60.Ak
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I. INTRODUCTION

The fracture of materials is a catastrophic phenomeno
considerable technological and scientific importance. Des
the large amount of experimental data and the consider
effort that has been undertaken by material scientists@1#,
many questions about fracture remain standing. There is
comprehensive understanding of rupture phenomena
only a partial classification in restricted and relatively simp
situations. This lack of fundamental understanding is
flected in the absence of reliable prediction methods for r
ture based on a suitable monitoring of the stressed syste

Some progress has been made in recent years in the p
ics community. Based on analogies with phase transitio
several groups@2–13# have proposed that, in heterogeneo
materials with disorder such as fiber composites, rocks, c
crete under compression, and materials with large distribu
residual stresses, rupture is a genuine critical point, i.e.,
culmination of a self-organization of diffuse damage and m
crocracking characterized by power-law signatures. Exp
ments@3,8,10,12,13#, numerical simulations@6,7,9,11#, and
theory @9# confirm this concept.

As a signature of criticality, acoustic emissions radia
during loading exhibit an acceleration of their rate close
rupture @3,10,13#. Specifically, under a constant stress ra
the cumulative acoustic energyE(t) released up to timet can
be expressed as

E~ t !5E02B~ tc2t !a, ~1!

*Electronic address: gluz@idirect.com
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with B.0 and 0,a,1. Expression~1! corresponds to a
ratedE/dt of acoustic energy release diverging at the critic
rupture timetc with a negative exponenta21. This behav-
ior ~1! has been at the basis of previous claims that ruptur
a critical phenomenon. In addition, this power law~1! as
well as extensions with log-periodic corrections have be
suggested to be useful for prediction@14,3,4,12,13#.

Our purpose here is to present, extend, and analyz
simple self-consistent model of damage that predicts a
havior similar to Eq.~1!. We explore its different regimes
and then improve on its ‘‘mean-field’’ version which pre
dicts an unrealistic finite-time singularity. In this goal, w
propose to use the general functional renormalization
proach developed by Yukalov and Gluzman to cure t
anomaly. We show how this technique allows us to chan
an unrealistic singularity into the observed behavior~1! with
a reasonable exponenta51/2, without introduction of any
extra parameters in the theory.

II. CUMULATIVE DAMAGE MODEL

Initially introduced as a global ‘‘mean-field’’~uniform!
description of the global deterioration of the system at
macroscopic scale@15#, the concept of ‘‘damage’’ has bee
extended at the mesoscopic scale to describe the heterog
ity and spatial variability of damage in different location
within the material@6,16–18#. We use the formulation of
Zobnin @19# and Rabotnov@20# to show how it leads natu
rally to a finite-time singularity. We first recall briefly th
integral formulation of Rabotnov@20# ~pps. 166–170! and
then transform it in differential form to exhibit the funda
mentally nonlinear geometrical origin of the singularity.

A material is subjected to a stresss0 at large scale and
©2001 The American Physical Society29-1
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S. GLUZMAN AND D. SORNETTE PHYSICAL REVIEW E63 066129
each pointr within it carries a damage variabled(r ,t). When
d reaches the thresholdd* at some location, this local do
main is no longer able to sustain stress and a microcr
appears, leading to a redistribution of the stress field aro
it according to the laws of elasticity. From a physical po
of view, a solid is considered to be damaged if some of
bonds connecting parts of its microstructure are missing.
introduction of the damage variable involves a local aver
ing of the effect produced mostly by microcracks. The da
age variable is a continuum dimensionless quantity wh
measures the cumulative effect which the microcracks
well as other microdefects, have on the macroscopic
sponse of the system. The effect of many microdefects
be described analytically as we do here by a damage vari
only when the material is statistically homogeneous@21#.

Within a continuous description, the damage variable
taken to vary smoothly and continuously in space and tim
so that we can define the local damaged(r ,t) at point r at
time t. Following previous works@15,17,6,16,18–20#, the lo-
cal damage variabled(r ,t) is taken to evolve in time accord
ing to

d~d!

dt
5

1

tcharac
Fs~r ,t !

s0
Gm

. ~2!

s(r ,t) is the local stress field at pointr at timet. Heres0 is
a characteristic stress beyond which the rate of damage
comes large.tcharac is a characteristic time scale controllin
the rate of damage for a given stress condition.m is the
so-called damage exponent which can span values from
close to` depending upon the material. A small value ofm
represents a more ‘‘ductile’’-like material undergoin
broadly distributed damage before the incipient rupture
large value ofm describes a brittle material with a localize
damage mostly developing in the most-stressed reg
within the material. In the discrete two-dimensional~2D!
models of Refs.@6,16#, it was indeed shown that ruptur
reduces to the percolation model in the limitm→0. In the
other limit m→`, rupture occurs through a one-crac
mechanism.

It is convenient to work with dimensionless variables. W
thus make the transformations(r ,t)/s0→s(r ,t) and
t/tcharac→t such that Eq.~2! reads

d~d!

dt
5@s~r ,t !#m. ~3!

Following Rabotnov@20#, we assume that a major crac
dominates the rupture process. If only one crack is pres
within the system, the stresss(r ,t) is easily calculated. Con
sidering only the possibility of a linear straight crack of ha
lengtha(t) advancing within the material at velocityda/dt
~see@22# for generalizations to self-affine crack geometrie!,
it is enough to calculate the stress field on the points ahea
the crack to fully characterize the rupture dynamics. Fo
planar elastic material subjected to a uniformly distribu
antiplane stress at infinity with a crack lying on they axis
between2a(t) anda(t), the stress field at pointy on they
axis beyond the crack tip is@23#
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s~y,t !5
2s0

3

y

Ay22@a~ t !#2
. ~4!

The mean-field approximation made in this first version
the model consists in assuming that the stress field is
modified by the nonvanishing and nonuniform damage fie
This means that the elastic coefficients are taken cons
and independent of the progressive damage, except of co
when the damage reaches its rupture thresholdd* .

The law describing the growth of the crack, i.e., the d
namicsa(t), is obtained from the self-consistent conditio
that the time it takes from a point aty, at the distancey
2a(t) from the crack tip at timet, for its damage to reach
the rupture thresholdd* is exactly equal to the time taken fo
the crack to grow from sizea(t) to the sizea(t)5y so that
its tip reaches the pointy exactly when it ruptures. This is
illustrated in Fig. 1. This self-consistent condition is the on
one that is fully consistent with the continuous descriptio
without adding any additional ingredient. It embodies t
time delay necessary for the damage at one point ahea
the crack tip to grow up to the rupture point which coincid
with the arrival of the crack tip. Other conditions are cons
ered below which introduce characteristic length or tim
scales.

Mathematically, this self-consistent condition is that t
integral of Eq.~3! from time 0 at which the preexisting dam
age was 0 until timet at which the crack tip passes throug
y is such thatd reaches exactly the thresholdd* at the time
t. Two conditions must thus be verified simultaneously:~i!

FIG. 1. Illustration of the law governing the growth of the crac
the dynamics of its lengtha(t) is obtained from the self-consisten
condition that the time it takes from a point aty, at the distance
y2a(t) from the crack tip at timet, for its damage to reach the
rupture thresholdd* be exactly equal to the time taken for the cra
to grow from sizea(t) to the sizea(t)5y so that its tip reaches the
point y exactly when it ruptures.
9-2
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SELF-CONSISTENT THEORY OF RUPTURE BY . . . PHYSICAL REVIEW E63 066129
a(t)5y ~the crack tip reaches pointy) and ~ii ! d(y,t)5d*
~the damage aty reaches the rupture threshold!.

III. LINEAR DAMAGE LAW: mÄ1

We first consider the linear damage lawm51 corre-
sponding to the initial formulation of Zobnin@19#. This case
has also been investigated and solved in@24# in the context
of crack growth due to electromigration rather than mecha
cal stress~current plays the role of the stress and, in t
antiplane case studied here, the two problems are form
identical!. This model is particularly interesting since it a
lows for both an exact solution and an exact renormaliza
in the functional renormalization scheme@34#. It also pro-
vides a benchmark for approximate solutions in the gen
case 0,m,2 as we discuss below.

We now proceed to give the equation for the crack d
namics and its solution. By integration of Eq.~3!, the two
self-consistent conditions expressed for the casem51 lead
to

E
0

t

dt
2s0

3

a~ t !

A@a~ t !#22@a~t!#2
5d* , ~5!

where the loading stresss0 can depend on time. The solutio
of this integral equation provides the time evolutiona(t) of
the macrocrack. To get it explicitly, we set

z5@a~ t !#2 and z5@a~t!#2. ~6!

Changing the variable of integration fromt to z gives

E
z0

z

dzs0

~dt/dz!

Az2z
5

3

2

d*

Az
. ~7!

This equation~7! is an Abel equation with index21/2, in-
volving a fractional integral operator@25#. Defining the Abel
operatorI a* acting on the functionf (t) as

I a* $ f %5E
0

t ~ t2s!a

G~11a!
f ~s!ds, ~8!

the product of two such Abel operators is

I a* I b* $ f %5I a* $I b* $ f %%5E
0

t

dt
~ t2t!a

G~11a!
E

0

t ~t2s!b

G~11b!
f ~s!ds

5E
0

t

ds f~s!
1

G~11a!G~11b!
E

s

t

dt~ t2t!a~t2s!b

5E
0

t

ds f~s!
~ t2s!a1b11

G~21a1b!
. ~9!

This shows that

I a* I b* $ f %5I a1b11* $ f %. ~10!
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We thus see thatI a* I 212a* $ f %5I 0* , which is nothing but the
integral operator. The inverse of the Abel operatorI a* is thus
(d/dt)(I 212a* ). Applying this result to Eq.~7!, we find

dt

dz
5

3

2

d*

ps0

d

dzEz0

z dz

Az~z2z!
. ~11!

Calculating the integral on the right-hand side~RHS! of Eq.
~11!, performing the derivative, and inverting to getdz/dt,
we get

dz

dt
5

2ps0

3d*
zAz2z0

Az0

. ~12!

Replacingz by @a(t)#2 leads to the differential equation fo
the crack half-lengtha(t):

da

dt
5

ps0

3d*
aAS a

a0
D 2

21, ~13!

which is exactly equivalent to the self-consistent integ
equation~5!. It is remarkable that the local growth equatio
~13! embodies exactly the same physics as the long-t
memory integral~5!.

For simplicity, let us take the loading stresss0 constant.
This situation is generic of experiments measuring the l
time of structures under a constant load. At sufficiently lo
times for whicha(t)@a0, expression~13! reduces to

da

dt
'

ps0

3a0d*
a2. ~14!

Equation~14! is characteristic of a solution going to infinit
in finite time. Indeed, we can write~14! asda/dt}ra, with a
growth rater}a. The generic consequence of a power-la
acceleration in the growth rater}ad with d.0 is the appear-
ance of a singularity in finite time:

a~ t !}~ tc2t !2b, with b5
1

d
andt close totc . ~15!

Equation ~14! is said to have a ‘‘spontaneous’’ or ‘‘mov
able’’ singularity at the critical timetc @26#, the critical time
tc being determined by the constant of integration, i.e.,
initial condition a(t50)5a0. Note the intriguing fact that
the (tc2t)21 singularity appears as the solution of a line
mechanical problem. The source of the quadratic nonline
ity is the nonlocal geometrical condition that the delay
action of the stress field on the cumulative damage sho
coincide exactly with the passage of the crack tip. The n
linear finite-time singularity has thus fundamentally a non
cal geometrical origin or, alternatively, can be seen to re
from a long-term memory effect.

The exact solution of Eq.~13! is easily obtained by inte-
gration:

a~ t !5
a0

cos@~ps0 /3d* !t#
. ~16!
9-3
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S. GLUZMAN AND D. SORNETTE PHYSICAL REVIEW E63 066129
This retrieves the solution obtained by Zobnin@19# and
Rabotnov@20#. We verify directly that the singularity occur
when the cosine goes to zero, i.e., when the argum
reachesp/2, i.e., fortc53d* /2s0. Since the cosine vanishe
linearly with time, this recovers the asymptotics~15! with
the exponentb521, as predicted by the asymptotic equ
tion ~14!.

Of course, the singularities will not occur in a physic
system as the crack tip cannot go to an infinite velocity.
the crack tip accelerates to a velocity which is no long
small compared to the sound wave velocity, the pres
theory has to be modified to include elastodynamic effe
We stress, however, that this does not invalidate the pre
treatment, which should be understood as applying to
early stage of the quasistatic crack growth. Here, the t
‘‘quasistatic’’ refers to the approximation in which the finite
ness of the sound wave velocity is neglected. The growth
a crack can thus be classified into two regimes: the first e
one described here is controlled by the physics of quasis
damage; the second regime is fully dynamical and the cr
tip velocity saturates at a velocity of the order of the sou
wave velocity. This classification is well known and has f
instance been used successfully in the Ruina-Diete
theory of frictional rupture@27#.

IV. NONLINEAR DAMAGE LAW WITH FINITE-TIME
SINGULARITY: 0 ËmË2

A. Derivation of the differential equation
for the crack dynamics

The case where 0,m,2 can be similarly treated and ou
results here extend those of Zobnin@19# and Rabotnov@20#.
Our results retrieve those found in@28#, obtained in the con-
text of crack growth due to electromigration. For comple
ness and coherence in notation, we briefly present
method and the results which are more focused on the fin
time singularity.

For simplicity, we imposes0 constant. Integrating Eq.~3!
and applying the self-consistent conditions~i! and ~ii ! given
at the end of Sec. II leads to

E
0

t

dtS 2s0

3 D m @a~ t !#m

$@a~ t !#22@a~t!#2%m/2
5d* . ~17!

We set again the change of variables~6! and changing the
variable of integration fromt to z gives

E
z0

z

dz
~dt/dz!

@z2z#m/2
5S 3

2s0
D m d*

zm/2
. ~18!

This equation~7! is again an Abel equation with inde
2m/2 if 0,m,2.

In order to transform it into differential form, we coul
use the formalism of Abel operators. We choose a m
transparent and direct approach which is closely rela
First, we multiply both sides of Eq.~18! by 1/(y2z)12m/2

and integrate overz from z0 to y:
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E
z0

y

dzS E
z0

z

dz
~dt/dz!

~z2z!m/2~y2z!12m/2D
5S 3

2s0
D m

d* E
z0

y dz

zm/2~y2z!12m/2
. ~19!

Changing the order of integration on the LHS leads to

E
z0

z

dz
dt

dz F E
z

y dz

~z2z!m/2~y2z!12m/2G
5S 3

2s0
D m

d* E
z0

y dz

zm/2~y2z!12m/2
, ~20!

where we have used the equality of the triangle*z0

y dz*z0

z dz

5*z0

z dz*z
ydz.

The integral in the square brackets on the LHS of Eq.~20!
can be expressed through the Euler beta functionB(a,b):

E
z

y dz

~z2z!m/2~y2z!12m/2

5BS 12
m

2
,
m

2 D5

GS 12
m

2 DGS m

2 D
GS 12

m

2
1

m

2 D 5
p

sinS m
p

2 D .

~21!

We thus obtain

p

sinS m
p

2 D Ez0

z

dz
dt

dz
5S 3

2s0
D m

d* E
z0

y dz

zm/2~y2z!12m/2
.

~22!

After differentiation with respect toz, we get

dt

dz
5S 3

2s0
D m

d*
sinS m

p

2 D
p

d

dzEz0

z dz

zm/2~z2z!12m/2
.

~23!

B. Asymptotic solution close to the finite-time singularity

The solution of Eq.~23! can be obtained for large crac
sizesa(t), i.e., largez. In this goal, we replace the term (z
2z)12m/2 in the integral on the RHS of Eq.~23! by z12m/2,
neglectingz compared toz. Intuitively, this is justified over
the whole domain of integration because the contribut
from the domain wherez is not negligible compared toz is
finite, since the power 12m/2 is less than 1, correspondin
to an integrable singularity.

With this approximation, the integral can be performe
the derivative taken, and after inverting, we get
9-4
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S 3

2s0
D m

d*
sinS m

p

2 D
p

dz

dt
5z0

211m/2z22m/2. ~24!

Using a5Az as defined in Eq.~6!, we obtain

a~ t !5
a0

S 12
t

tc
D b , ~25!

where

tc5S 3

2s0
D m

d*
2 sinS m

p

2 D
p~22m!

~26!

and

b5
1

22m
. ~27!

Note that the exact asymptotics~15! of the casem51
previously solved exactly is recovered, with the correct
ponentb(m51)51 and a rather good approximation of th
critical tc : while the exact value istc53d* /3s0, expression
~26! predicts (2/p)tc , i.e., 36% lower. The critical timetc as
a function of m is smooth with no accident or divergenc
over the whole interval. In particular, the estimated critic
time for the limit m→22 is equal to 9d* /4s0

2.
In contrast, the exponentz increases fromb(m→01)

51/2 to 1` as the damage exponentm varies from 0 to 2.
The limit b(m→01)51/2 can be rationalized as follows
This limit m→01 corresponds to the situation where dama
becomes independent of stress. As a consequence, re
ducing some heterogeneity for instance on the preexis
damage, rupture is then equivalent to percolation, as the p
of the system that break as a function of time are determi
by the damage accumulating at the same rate for all point
with different random initial values. In mean-field percol
tion @29# obtained through the consideration of on
dimensional percolating paths consistent with the pres
one-crack geometry, the elastic energy under constant
diverges as (tc2t)21 where 1 is the mean-field value of th
exponent for conductivity~which is the same as elasticity i
the scalar mode III version of mechanical deformations u
here!. Since the elastic energy is proportional to the squar
the crack length, we get the predictiona(t);(tc2t)21/2.
This reasoning holds if the exponent is a smooth function
disorder and geometry~the present case studied here is a
zero-disorder limit!.

The divergence ofb at m52 signals a change of regim
that we study in the next section.

V. NONLINEAR DAMAGE LAW WITH mÐ2

For m>2, the integrals in Eqs.~17! and ~18! diverge at
a(t)5a(t), since the negative power with exponentm/2 is
no longer integrable. Technically, the main difference b
06612
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tween the casesm,2 andm>2 is that we need to regulariz
the infinity in the expression~21! by introducing some sor
of dimensionless cutoff. The important physical message
that the regime wherem>2 is controlled by a novel physica
parameter, which we identify as a length scale associa
with the damage law. In other words, the physics of t
rupture is inherently controlled by the choice of the cuto
i.e., by the existence of a microscopic length scale. We co
summarize the situation by saying that there is no continu
limit to the theory form>2. This is similar to previous ob-
servations obtained in a dynamical theory of rupture fro
propagation@30#. We now present two ways for regularizin
the divergence and thus for obtaining a meaningful theory
rupture.

A. Regularization by damage saturation at a microscopic scale

Before describing the physical content of the regulari
tion we propose, we need to express the problem in a m
manageable mathematical form. Since the culprit for the
vergence is the integral~21! and the divergence occurs fo
z→z2, we introduce the variable

Z5
z2z

y2z
~28!

and rewrite Eq.~21! as

E
z

y dz

~z2z!m/2~y2z!12m/2
5E

0

1

dZZ2m/2~12Z!m/221,

~29!

which makes it apparent that the divergence is due toZ2m/2

at the lower bound 0. It is thus natural to regularize by
troducing a dimensionless cutoffe.0 and replace Eq.~29!
by

E
e

1

dZZ2m/2~12Z!m/221[b~m,e!. ~30!

The functionb(m,e) is such that

lime→01b~m,e!5BS 12
m

2
,
m

2 D , for 0,m,2,

~31!

where the beta functionB(12m/2,m/2) has been defined in
Eq. ~21!.

In constrast, we have

b~m,e!;
1

e (m22)/2
, for m.2, ~32!

and

b~m,e!; ln
1

e
, for m52, ~33!

showing that the divergence of the integral~29! is now en-
capsulated in the dependence of the factorb(m,e) on e. This
9-5
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regularization scheme thus relies on the existence of the
nite integral~30!, by analogy with the casem,2.

Using the regularization~30!, we obtain

dt

dz
5S 3

2s0
D m d*

b~m,e!

d

dzEz0

z dz

zm/2~y2z!12m/2
, ~34!

which extends Eq.~11! to the regimem>2. Its formal solu-
tion obtained in implicit form is

t5S 3

2s0
D m d*

b~m,e!
E

z0

z

dy
d

dyEz0

y dz

zm/2~y2z!12m/2
.

~35!

This regularization scheme allows us to obtain exact so
tions for integerm’s. We examine the solutions form52, 3,
4, and 5 and then the general case. Form52, we have the
expression for all times given by

z2~ t !5z0et/te,2, ~36!

where

te,25
9d*

4s0
2

1

ln
1

e

. ~37!

For m53, z3(t) is the solution to

A~z/z0!212tan21@A~z/z0!21#5
t

te,3
, ~38!

where

te,35
27d*

8s3Az0

e1/2. ~39!

For large times, we get

z3~ t !'z0S t

te,3
D 2

. ~40!

For m54, z4(t) is the solution to

2 ln~z/z0!1~z/z0!215
t

te,4
, ~41!

where

te,45
81d*

16s4 e. ~42!

For large times, we get

z4~ t !'z0

t

te,4
. ~43!

For m55, z5(t) is the solution to
06612
fi-

-

@~z/z0!21#3/223@~z/z0!21#1/213 tan21$@~z/z0!21#1/2%

5
t

te,5
, ~44!

where

te,55
243d*

32s5 e3/2. ~45!

For large times, we get

z5~ t !'z0S t

te,5
D 2/3

. ~46!

More generally, at large times,

zm~ t !'z0S t

te,m
D 2/(m22)

, ~47!

am~ t !'a0S t

te,m
D 1/(m22)

, ~48!

where

te,m}e (m22)/2;
1

b~m,e!
. ~49!

From these solutions, it is apparent that the dynamicsz(t)
[@a(t)#2 is controlled by the characteristic timete,m defined
in Eq. ~49!. Note that the inverse dependence ofte,m on
b(m,e) is obvious from the expression~35!. As the cutoff
e→0, te,m→0 and the global rupture occurs in vanishin
time. The physical explanation of this phenomenon is as
lows. Form>2, the driving forcesm of the damage law~3!
is so strong close to and at the crack tip that it takes eff
tively zero time for a point to be brought to the dama
threshold. To see this, let us truncate the integral in Eq.~17!
such that the upper bound is changed fromt to t2h. The
divergence of the integral at the crack tip means that
contribution to the cumulative damage occurring in the tim
interval from t2h to t is larger ~actually infinitely larger!
than the contribution from time 0 to timet2h. This means
that the progressive damage leading to the acceleratio
a(t) for m,2 is replaced by an infinite velocity as soon
we start from a finite crack and do not introduce the fin
cutoff length.

This clarifies the physical meaning of the cutoffe defined
in Eq. ~30!. A nonzeroe means that the integral overz in Eq.
~29! does not go all the way up toz. Translated in terms of
physical distances, it means that the integral inz on the LHS
of Eq. ~18! also does not go all the way up toz. Physically,
this means that the damage on a given point ahead of
crack tip reaches the critical valued* before the crack tip
reaches that point. The valued* is no longer the rupture
threshold but a saturation value. The crack tip dynamics
now determined by the condition that the damage at
given pointy reaches this saturation valued* when the crack
tip is at a fixed distance}e from y. This condition embodies
9-6



o

an
uc
m
re
u

tu

sti
e
ta
m
si

l
o-

m
rr
ar
e
s

-

tio

ti
h
w

-

o
r
i

tin
tu
al
a

a
on

si
m

tre

t

ck.
-
and

ce

n

but
rre-

f

le

SELF-CONSISTENT THEORY OF RUPTURE BY . . . PHYSICAL REVIEW E63 066129
the existence of a microscopic length scale}e such that the
damage is no longer defined as smaller scales. Note, h
ever, that the regularization performed in Eq.~30! has been
chosen for its mathematical simplicity. It is not related in
obvious way to a clearly defined physical mechanism, s
as plasticity, creep, or time delays. It only qualitatively e
bodies the existence of a finite length scale. This is the
son for our consideration of more physically motivated b
more complex mathematically regularization schemes s
ied below.

The main result of our analysis is that the characteri
time scalete,m of the crack dynamics is controlled by th
microscopic length scale. The theory has thus fundamen
no continuous limit. It is one of several interesting and i
portant examples in physics where the macroscopic phy
is completely controlled by the microscopic physics~the ul-
traviolet cutoff!. This situation is found in many physica
problems: for instance, in correlation functions in tw
dimensional systems@31# and in nonlinear diffusion@33# as
well as in quantum electrodynamics@32#. Note, however, the
difference between the last two examples and the for
ones: in our rupture problem as well as in the case of co
lation functions in 2D systems, the ultraviolet cutoff appe
naturally, as an atomic distance, while in the last two cas
there is no meaningful natural cutoff, and hence the neces
to ‘‘cover up’’ divergencies by the ‘‘renormalization’’ pro
cedure@32#.

B. Regularization by stress saturation at a microscopic scale

The previous regularization scheme invokes a satura
of the damage at a microscopic length}e. Alternatively, the
saturation can occur on the stress field, whose mathema
divergence is bound to be rounded off at atomic scales. T
provides another regularization scheme. To implement it,
use the continuous expression~4! for all distances from the
crack tip down to a regularization lengthl such that, for
distances from the crack tip from 0 tol , the stress is con
stant equal tos(l ) given by Eq.~4! with y5a(t)1l . This
regularization is standard in the theory of damage and
plasticity. The idea is that a sufficiently large damage exe
a feedback on the stress field which then departs from
damage-free continuous expression~4!. This extension to
Rabotnov’s treatment provides a natural way for construc
a self-consistent theory of damage: not only does rup
occur by the cumulative effect of damage, damage has
the effect of smoothing out the mathematical singularity
the crack tip. The cutoffl has the physical meaning of
so-called process zone or damage zone and its introducti
fully consistent with the dynamical damage law~3!. How-
ever, as we have seen above, for a damage law with
exponent 0,m,2, the resulting dynamics becomes insen
tive to the existence of a microscopic length scale in the li
where it is small. In this sense, the regime 0,m,2 is more
universal and has a continuous limit.

We propose two models that implement these ideas.

1. Saturation of the stress at a fixed distance to the crack tip

The regularization scheme used here is such that the s
is assumed to saturate at a fixed distancel from the crack
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tip. Thus, for timest up to t l (t), the damage at a fixed poin
that will be reached by the crack tip at timet is growing
under the influence of the stress field created by the cra
From time t l (t) up to time t, the damage is increasing lin
early with time, since the stress is assumed constant
equal to the value it reaches at timet l (t). The saturation
time t l (t) is determined by the equation

a~ t !2a~ t l !5l . ~50!

In this version of the regularized theory, expression~17! is
changed into

E
0

t l

dtS 2s0

3 D m @a~ t !#m

$@a~ t !#22@a~t!#2%m/2

1S 2s0

3 D m @a~ t !#m

@~2a~ t !2l !l #m/2
~ t2t l !5d* , ~51!

wheret l is the time at which the crack tip is at the distan
l from the position it will have at timet @see Eq.~50!#.

Note that we now have two equations for two unknow
a(t) and a(t l ). The second term on the LHS of Eq.~51!
expresses the linear increase in damage fromt l to t under
the saturated stress. In this model,l is fixed andt l adjusts
itself. The value of the saturated stress is not a constant
increases as the crack gets larger and larger, since it co
sponds to the value at a fixed distancel from the tip of a
growing crack.

The change of variables~6! and changing the variable o
integration fromt to z give

E
z0

(Az2l )2

dz
~dt/dz!

@z2z#m/2
1

t2t l

@~2Az2l !l #m/2

5S 3

2s0
D m d*

zm/2
with Az2a~ t l !5l . ~52!

Note thatt2t l can also be written

t~z!2t„~Az2l !2
…'2l Az

dt

dzU
z

1O~ l 2!. ~53!

The integral on the LHS of Eq.~52! is analyzed similarly to
the previous case~18!. We multiply the integral by 1/(y
2z)12m/2 and integrate overz from (Az01l )2 to y:

E
(Az01l )2

y

dzS E
z0

(Az2l )2

dz
~dt/dz!

~z2z!m/2~y2z!12m/2D
5E

z0

(Ay2l )2

dz
dt

dz F E
(Az1l )2

y dz

~z2z!m/2~y2z!12m/2G ,

~54!

where we have used the equality of the triang

* (Az01l )2
y dz*z0

(Az2l )2
dz5*z0

(Ay2l )2
dz* (Az1l )2

y dz.
9-7
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The integral in the brackets on the RHS is the same a
Eq. ~30!, which defines the functionb(m,e) with

e~z!5
~Az1l !22z

y2z
'

2l Az

y2z
. ~55!

Note thate(z) is now a function ofz.
Using Eqs.~53! and ~54!, expression~52! gives

E
z0

(Ay2l )2

dz
dt

dz
b„m,e~z!…

1E
(Az01l )2

y

dz
2l Az

~y2z!12m/2[(2Az2l )l ] m/2

dt

dz

5S 3Ad*

2s0
D m

E
(Az01l )2

y dz

zm/2~y2z!12m/2
. ~56!

Since

b„m,e~z!…}1/em/221}S 2l Az

y2z D 12m/2

, ~57!

we see that the first integral of the LHS of Eq.~56! is neg-
ligible compared to the second integral of the LHS of E
~56! in the limit of large cracks, i.e., largez. Neglectingl

compared toAz in the denominator of the integrant of th
second integral of Eq.~56! and equating this second integr
to the RHS gives the following equation:

dt

dz
5~2l !m/221S 3Ad*

2s0
D m 1

zm/411/2
. ~58!

For m.2, m/41 1
2 .1 and the solution of Eq.~58! is

a~ t !}
l

~ tc2t !2/(m22)
, ~59!

wheretc is determined from the initial size of the crack. Th
finite-time singularity results from the ever-increasing str
field at the fixed distancel from the crack tip. This solution
~59! is qualitatively different from the solution~25! found in
the regimem,2 as Eq.~59! depends in a fundamental wa
upon the existence of the regularization scalel .

2. Saturation by fixing an absolute maximum stress

An alternative prescription for the regularization is th
the stress saturates at a constant valuesmax. This is in con-
strast with the previous regularization scheme where
stress saturates at a value reached at a constant distanc
value thus increasing with the crack length. Expression~51!
is then changed into

E
0

t l

dtS 2s0

3 D m @a~ t !#m

$@a~ t !#22@a~t!#2%m/2
1@smax#

m~ t2t l !

5d* , ~60!
06612
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2s0

3

a~ t !

$@a~ t !#22@a~ t l !#2%1/2
5smax, ~61!

which is the condition that the stress saturates. It gives

@a~ t l !#25@a~ t !#2~12A2!, ~62!

where

A5
2s0

3smax
. ~63!

The equation~60! governing the dynamics of the crack ti
can thus be written

2s0

3 E
z0

(12A2)z
dz

dt/dz

~z2z!m/2
1@smax#

mA2z
dt

dz
5d* , ~64!

where we have used the expansion

t~z!2t„~12A2!z…'A2z
dt

dzU
z

1O~A4!, ~65!

valid in the interesting regimesmax@s0 giving A!1.
The second term on the LHS of Eq.~64! dominates the

first integral for largez, as can be checkeda posteriori. For
large crack sizes, the expression~65! can thus be simplified
into

@smax#
mA2z

dt

dz
5d* , ~66!

whose solution is

a~ t !5a0et/t0, ~67!

where

t05
2d*

A2@smax#
m

5
9d*

2s0
2@smax#

m22
. ~68!

VI. BEYOND THE MEAN-FIELD VERSION
BY FUNCTIONAL RENORMALIZATION

Let us restrict our discussion to the casem51 for which
we have the complete analytical solution for the crack d
namics. The solution~16! with its asymptotic behavior~15!
is not physically reasonable, as the crack reaches an infi
length in a finite time. The (tc2t)21 singularity has been
found to appear as the consequence of a geometric no
earity on an otherwise linearized mechanical problem. In
ality, nonlinearity, viscosity, feedback, and spatial hetero
neity of material properties and of cracking should mod
the singularity. In addition, the main simplification in th
previous approach is to neglect the impact of damage on
elastic coefficients of the material, thus leading to a str
field created by the crack which is identical to the field th
9-8
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the samestatic crack would generate in an undamaged m
terial. Our hypothesis is that such modification can be
duced by a smooth or regular deformation of the solut
previously obtained.

In this goal, we propose to apply the Yukalov-Gluzm
functional renormalization method@34# to the series expan
sion of the solution~16! to obtain the renormalized law tha
accounts for these effects in a generic sense. Let us
consider the asymptotic power law singularity~15!

a~ t !5
2a0

p
~12x!21, where x[t/tc . ~69!

The powersxn in the expansion

a~ t !5
2a0

p
~11x1x21x31••• ! ~70!

may be considered as hidden free parameters. Indeed, l
multiply the expansion byxs. We then have a trial expansio
for the solution. Fors50, we return to the regular expan
sion. Such multiplication can be applied repeatedly, for
stance, using the functional renormalization method@34#.
The idea behind the introduction of the multiplicative~con-
trol! function such as the powers in xs is to deform smoothly
the initial functional space of the expressiona(t) taken as an
approximation to be improved. The condition for the im
provement is to obtain a faster and better controlled con
gence in the space of the modified functions upon addition
successive termsxn in the expansion. By this procedure, th
dominant poles are eliminated or weakened as a result
sequential reduction of stress level at each step of the res
mation procedure. This corresponds to utilizing the inform
tion from the initial series pertaining to the times preced
the critical time tc , where the level of damage is lowe
Thus, the renormalization procedure is performing a m
ping from the dynamics at early time far from the critic
point to later times closer to the critical time. The stabiliz
tion stems from the fact that the information contained in
initial series related to times close totc is minimized on the
basis that it has an overly destabilizing effect in the desc
tion and should be weighted less than the information
earlier times.

At each step of the functional renormalization corr
sponding to the addition of a new term, we select the ren
malized function according to the principle of minimum ‘‘lo
cal’’ multiplier, i.e., maximum stability on each substep
the renormalization procedure. Since these multipliers
proportional to the derivativeda/dt @34#, the principle of
minimal multiplier implies a selection of the real-time traje
tory of the crack with minimal rate of damage~minimal
stresses!. In other words, this procedure amounts to impro
ing the theory by allowing the crack to organize and deve
so as to choose the most favorable path or dynamics. It
be shown@34# that, at each step, the choice of a forma
infinite exponents corresponds to the minimal multiplier a
arbitrary time.

The functional form of a superexponential solution is s
lected by this procedure: starting from an expansion
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k, the renormalized expression

as follows. With the use of the notation

b05a0 , bk5
ak

ak21
, k51,2, . . . , ~71!

we obtain thebootstrap self-similar approximantup to order
k,

Fk~x!5b0 exp„b1x exp$b2x exp@•••bk21x exp~bkx!#%•••…,
~72!

introduced by Yukalov and Gluzman@34#.
Let us now apply this result to the case~70! where all the

coefficientsan are equal to 1. The corresponding renorm
ized approximant replacing the initial input 1/(12x) of the
expansion reads

F~x!5exp$x exp@x•••exp~x!#•••%. ~73!

This embedded exponential series converges to a w
defined function. To determine it, we note thatF(x) obeys
the recursion relation

Fk11~x!5exp@xFk~x!#. ~74!

The fixed point to which these series of approximants c
verge is thus a solution of

F5exp~xF!, ~75!

noting thatF5pa/2a0. The limit F`(x) exists for2e<x
<e.

The fixed pointF(x) can be shown@26# to be the solution
of the equation

dF

dx
5

F2

12xF
. ~76!

Searching for a solution in the form of a Taylor series

F~x!5 (
n50

`

ynxn, y051, ~77!

we get

yn5
~n11!n21

n!
. ~78!

Sincen!'nne2n, yn'en for large n and the generic term
ynxn in the series~77! is proportional to (ex)n. This shows
that the radius of convergence of the series~77! is 1/e.

F(x) has a singularity whenx approaches 1/e from below,
whose shape is obtained by expansions of expression~75!:

F~x!5x→1/ee~12A2e3/2A1/e2x!. ~79!

Thus, the self-similar functional renormalization has tran
formed a pole~divergence ofa) at t5tc into a square root
singularity ~finite a) at a smallert5tc /e. In this renormal-
ized theory, the crack accelerates up to the timetc /e as
which time its velocity diverges, while the crack is still fi
9-9
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nite. This announces the global breakdown. It is interes
that the exponent 1/2 is close to the value found for acou
emissions in experiments@3,10,12,13#.

We can offer the following physical intuition for thi
transformation from the solution~15! with b51 to b
521/2. As the material becomes more and more dama
the ulterior functional dependence of damage as a functio
applied stress is modified. Actually, the series of functio
renormalization amounts to effectively evolving or renorm
izing the damage law~3! into a succession of effective law
captured by the sequence of approximants, each approxim
order corresponding to an increase in the overall damag
the material. Here, we have a mapping between a measu
evolution via the cumulative damage, i.e., a measure
passed time, and the order of the approximants, and thus
distance to the fixed point in the functional space.

Consider now the general casea(t);(12x)2b. Expand-
ing in power series, we get

~12x!2b5 (
n50

`

anxn, ~80!

where

an5
~n1b21!!

n! ~b21!!
. ~81!

The Yukalov-Gluzman renormalization scheme gives the
perexponential~72! with coefficientsbn given by

bn5~n1b21!/n. ~82!

Since bn→1 for large n for any b, the fixed point of the
approximants is controlled by the same finite square-root
gularity of the type~79!. Thus, the functional renormaliza
tion maps all finite-time singularities with different expone
b on the same universal lawa(t)5a(tc)2CAtc2t, whereC
is a constant depending in particular onb. Tests of exten-
sions of this scheme for predicting rupture, i.e., for pred
J.

s.

et
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ing the critical timetc with respect to the order of the poly
nomials and as a function of noise, are reported in
companion paper@35#.

VII. CONCLUDING REMARKS

Two main regimes have been found for the growth o
crack in a medium obeying the damage lawd(d)/dt5sm

@Eq. ~3!#, wheres is the local stress. For 0,m,2, a preex-
isting crack grows to infinity in finite time and the dive
gence occurs as a power-law finite-time singularity. Form
>2, the solution exists for all times but the characteris
time scale of the crack growth is an increasing function o
microscopic length scale, which is essential for regulariz
the otherwise ill-defined problem. This microscopic leng
scale embodies the physical mechanism~s! by which the
mathematical stress singularity at the crack tip of a perfe
sharp crack is rounded off. We have examined two m
scenarios, a damage-limited rupture and a stress-limited
ture.

The remarkable behavior of this simple model resu
from the form of the irreversible damage law, in particul
from the fact that any nonvanishing stress increases the d
age. Damage at any point is thus a kind of ever-increas
counter of the history of the stress on that point. This feat
prevents the existence of stationary solutions of cra
propagating at constant velocities. In contrast, we only
tain ‘‘runaways.’’

Stationary solutions can be obtained in simple general
tions of the damage law~3!, for instance with a stress thresh
old below which no damage occurs or with a healing
work-hardening term, allowing recovery of the material a
a decrease of the damage when the stress is low. Such
ations have been investigated in discrete two-dimensio
models@16#.
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