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Self-consistent theory of rupture by progressive diffuse damage
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We analyze a self-consistent theory of crack growth controlled by a cumulative damage vdfigble
dependent on stress history, in the quasistatic regime where the sound wave velocity is taken as infinite.
Depending upon the damage exponentvhich controls the rate of damagel/dt< o™ as a function of local
stresso, we find two regimes. For €m<2, the model predicts a finite-time singularity. This retrieves
previous results by Zobnin fan=1 and by Bradley and Wu form<2. To improve on this self-consistent
theory which neglects the dependence of stress on damage, we apply the functional renormalization method of
Yukalov and Gluzman and find that divergences are replaced by singularities with exponents in agreement with
those found in acoustic emission experiments. Fer2, the rupture dynamics is not defined without the
introduction of a regularizing scheme. We investigate three regularization schemes involving, respectively, a
saturation of damage, a minimum distance of approach to the crack tip, and a fixed stress maximum. In the first
and third schemes, the finite-time singularity is replaced by a crack dynamics defined for all times but which
is controlled by either the existence of a microscopic scale at which the stress is regularized or by the
maximum sustainable stress. In the second scheme, a finite-time singularity is again found. In the first two
schemes within this regime=2, the theory has no continuous limit.
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[. INTRODUCTION with B>0 and O<a<1. Expression(1) corresponds to a
rated E/dt of acoustic energy release diverging at the critical

The fracture of materials is a catastrophic phenomenon afupture timet, with a negative exponent—1. This behav-
considerable technological and scientific importance. Despit@r (1) has been at the basis of previous claims that rupture is
the large amount of experimental data and the considerabk critical phenomenon. In addition, this power ld4®) as
effort that has been undertaken by material scienfisfs well as extensions with log-periodic corrections have been
many questions about fracture remain standing. There is nsuggested to be useful for predictifiv,3,4,12,138
comprehensive understanding of rupture phenomena but Our purpose here is to present, extend, and analyze a
only a partial classification in restricted and relatively simplesimple self-consistent model of damage that predicts a be-
situations. This lack of fundamental understanding is rehavior similar to Eq.(1). We explore its different regimes
flected in the absence of reliable prediction methods for rupand then improve on its “mean-field” version which pre-
ture based on a suitable monitoring of the stressed systemdicts an unrealistic finite-time singularity. In this goal, we

Some progress has been made in recent years in the phys-opose to use the general functional renormalization ap-
ics community. Based on analogies with phase transitiongproach developed by Yukalov and Gluzman to cure this
several group$2—13] have proposed that, in heterogeneousanomaly. We show how this technique allows us to change
materials with disorder such as fiber composites, rocks, coren unrealistic singularity into the observed behavigrwith
crete under compression, and materials with large distributed reasonable exponemt=1/2, without introduction of any
residual stresses, rupture is a genuine critical point, i.e., thextra parameters in the theory.
culmination of a self-organization of diffuse damage and mi-
crocracking characterized by power-law signatures. Experi-
ments[3,8,10,12,13 numerical simulation$6,7,9,11, and
theory[9] confirm this concept. Initially introduced as a global “mean-field’{uniform)

As a signature of criticality, acoustic emissions radiateddescription of the global deterioration of the system at the
during loading exhibit an acceleration of their rate close tomacroscopic scalfl5], the concept of “damage” has been
rupture[3,10,13. Specifically, under a constant stress rate,extended at the mesoscopic scale to describe the heterogene-
the cumulative acoustic energyt) released up to timecan ity and spatial variability of damage in different locations
be expressed as within the material[6,16—1§. We use the formulation of

Zobnin[19] and RabotnoJ20] to show how it leads natu-
E(t)=Eq—B(t,—t)°, (1) rally to a finite-time singularity. We first recall briefly the
integral formulation of Rabotno{20] (pps. 166—17Dand
then transform it in differential form to exhibit the funda-
*Electronic address: gluz@idirect.com mentally nonlinear geometrical origin of the singularity.
"Electronic address: sornette@unice.fr A material is subjected to a stresg at large scale and

II. CUMULATIVE DAMAGE MODEL
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each point within it carries a damage variabir,t). When A aw)
d reaches the threshold* at some location, this local do-
main is no longer able to sustain stress and a microcrack
appears, leading to a redistribution of the stress field around
it according to the laws of elasticity. From a physical point
of view, a solid is considered to be damaged if some of the Yo
bonds connecting parts of its microstructure are missing. The
introduction of the damage variable involves a local averag-
ing of the effect produced mostly by microcracks. The dam- i
age variable is a continuum dimensionless quantity which ag
measures the cumulative effect which the microcracks, as 0 >
well as other microdefects, have on the macroscopic re- time
sponse of the system. The effect of many microdefects can dy
be described analytically as we do here by a damage variable 1
only when the material is statistically homogene 2|

Within a continuous description, the damage variable is
taken to vary smoothly and continuously in space and time,
so that we can define the local damatfe,t) at pointr at *
timet. Following previous work$15,17,6,16,18—2the lo-
cal damage variablé(r,t) is taken to evolve in time accord-
ing to

vy Damage d(t)

FIG. 1. lllustration of the law governing the growth of the crack:
the dynamics of its length(t) is obtained from the self-consistent
condition that the time it takes from a point wt at the distance
y—a(7) from the crack tip at timer, for its damage to reach the
o(r,t) is the local stress field at pointat timet. Here oy, is rupture thresholdl* be exactly equal to the time taken for the crack
a characteristic stress beyond which the rate of damage b grow from sizea() to the sizea(t) =y so that its tip reaches the
comes larget araciS @ characteristic time scale controlling Peinty exactly when it ruptures.
the rate of damage for a given stress conditionis the

m

dd) 1 Ja(r,t) -

dt a tchara

0]

so-called damage exponent which can span values from 0 to 20, y
close tox depending upon the material. A small valuenof o(y,t)= 3 e 4
represents a more ‘“ductile’-like material undergoing vy —la(t)]

broadly distributed damage before the incipient rupture. A
large value ofm describes a brittle material with a localized The mean-field approximation made in this first version of
damage mostly developing in the most-stressed regionthe model consists in assuming that the stress field is not
within the material. In the discrete two-dimensiori@D)  modified by the nonvanishing and nonuniform damage field.
models of Refs[6,16], it was indeed shown that rupture This means that the elastic coefficients are taken constant
reduces to the percolation model in the limit—0. In the  and independent of the progressive damage, except of course
other limit m—oo, rupture occurs through a one-crack when the damage reaches its rupture threshsld
mechanism. The law describing the growth of the crack, i.e., the dy-

It is convenient to work with dimensionless variables. Wenamicsa(t), is obtained from the self-consistent condition
thus make the transformationr(r,t)/oq—o(r,t) and that the time it takes from a point g at the distancey

t/teharac—t such that Eq(2) reads —a(7) from the crack tip at timer, for its damage to reach
the rupture threshold* is exactly equal to the time taken for

d(d) m the crack to grow from siza(7) to the sizea(t)=y so that
T_[U(r't)] ' ®) its tip reaches the point exactly when it ruptures. This is

illustrated in Fig. 1. This self-consistent condition is the only
Following Rabotnov[20], we assume that a major crack one that is fully consistent with the continuous description,
dominates the rupture process. If only one crack is presenithout adding any additional ingredient. It embodies the
within the system, the stresqr,t) is easily calculated. Con- time delay necessary for the damage at one point ahead of
sidering only the possibility of a linear straight crack of half- the crack tip to grow up to the rupture point which coincides
lengtha(t) advancing within the material at velocitya/dt ~ with the arrival of the crack tip. Other conditions are consid-
(see[22] for generalizations to self-affine crack geometrjes ered below which introduce characteristic length or time
it is enough to calculate the stress field on the points ahead sicales.
the crack to fully characterize the rupture dynamics. For a Mathematically, this self-consistent condition is that the
planar elastic material subjected to a uniformly distributedintegral of Eq.(3) from time 0 at which the preexisting dam-
antiplane stress at infinity with a crack lying on tiieaxis  age was 0 until timeé at which the crack tip passes through
between—a(t) anda(t), the stress field at pointon they vy is such thad reaches exactly the threshald at the time
axis beyond the crack tip 23] t. Two conditions must thus be verified simultaneously:
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a(t)=y (the crack tip reaches poipf) and(ii) d(y,t)=d*
(the damage af reaches the rupture threshpld

We thus see thdt}1*,_ {f}=13 , which is nothing but the
integral operator. The inverse of the Abel operdfpiis thus
(d/dt)(1*,_,). Applying this result to Eq(7), we find

Ill. LINEAR DAMAGE LAW: m=1

. , , dr 3 d* d [z d¢
We first consider the linear damage law=1 corre- 11

sponding to the initial formulation of Zobnifi9]. This case dz 2 moo dz)z\((z- )

has also been investigated and solved24] in the context . . . .
of crack growth due to electromigration rather than mechani—C"’dC”l‘"‘t'ng the integral on the right-hand sideHS) of Eq.

cal stress(current plays the role of the stress and, in the(ll)’ performing the derivative, and inverting to git/dr,
antiplane case studied here, the two problems are formall¥>’e get
identica). This model is particularly interesting since it al- —
lows for both an exact sollaution andyan exact rgnormalization d_z — @ N2~ %o
in the functional renormalization scherm®4]. It also pro- dr  3d* \/z—o '
vides a benchmark for approximate solutions in the general

case &cm<2 as we discuss below. Replacingz by [a(t)]? leads to the differential equation for

We now proceed to give the equation for the crack dy-the crack half-lengtfa(t):

(12)

namics and its solution. By integration of E@), the two
self-consistent conditions expressed for the aasel lead
to

a(t) o 5

ft 20'0
dr— =d*,
o 3 JamPP-[a(n]?

where the loading stresg, can depend on time. The solution

of this integral equation provides the time evolutiaft) of
the macrocrack. To get it explicitly, we set

z=[a(t)]* and {=[a(7)]* (6)

Changing the variable of integration fromto ¢ gives

jzd (d7/d¢) 3d* @)
og—— =7 —.
Zy ° Vz—¢ 2 \/E

This equation(7) is an Abel equation with index-1/2, in-
volving a fractional integral operat$25]. Defining the Abel
operatorl* acting on the functiorf(t) as

t(t—9)”

0= | e (s ®

the product of two such Abel operators is

* % kg * _ t (t=7)“ 7(7'_5)'8
|a|B{f}—|a{|B{f}}—fodrr(l_’_a) Tiiag (e

= ftdsf(s) ! ftdr(t—r)“(r—s)ﬂ
0 Fri+ao)l'(1+pB)Js

:ftdsf(s)w (9)
0 re+a+p)’

This shows that

|§|2{f}:|2+5+1{f}- (10)

da woy a\?
—=_a\/| | -1,
dt 3d ag

which is exactly equivalent to the self-consistent integral
equation(5). It is remarkable that the local growth equation
(13) embodies exactly the same physics as the long-term
memory integral5).

For simplicity, let us take the loading stresg constant.
This situation is generic of experiments measuring the life-
time of structures under a constant load. At sufficiently long
times for whicha(t)>a,, expressior(13) reduces to

(13

da 7o

2
dt  3agd* & (14

Equation(14) is characteristic of a solution going to infinity
in finite time. Indeed, we can writd4) asda/dt«ra, with a
growth raterca. The generic consequence of a power-law
acceleration in the growth rateca® with §>0 is the appear-
ance of a singularity in finite time:

1
with EZE andt close tot,. (15

a(t)<(t.—t) 7,
Equation(14) is said to have a ‘“spontaneous” or “mov-
able” singularity at the critical time,, [26], the critical time
t. being determined by the constant of integration, i.e., the
initial condition a(t=0)=a,. Note the intriguing fact that
the (t.—t) ! singularity appears as the solution of a linear
mechanical problem. The source of the quadratic nonlinear-
ity is the nonlocal geometrical condition that the delayed
action of the stress field on the cumulative damage should
coincide exactly with the passage of the crack tip. The non-
linear finite-time singularity has thus fundamentally a nonlo-
cal geometrical origin or, alternatively, can be seen to result
from a long-term memory effect.

The exact solution of Eq.13) is easily obtained by inte-
gration:

Qo

a(t)= .
cog (may/3d*)t]

(16)
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This retrieves the solution obtained by Zobnih9] and y 2 (dr/d?)
RabotnoV[20]. We verify directly that the singularity occurs f dz( f d¢ - lm/2>
when the cosine goes to zero, i.e., when the argument Z 2 (z=O)™(y—2)

reachesr/2, i.e., fort.=3d*/20. Since the cosine vanishes

linearly with time, this recovers the asymptotitks) with :(i) md* J Y dz _ (19
the exponenB=—1, as predicted by the asymptotic equa- 209 29 Z"2(y—z)t~ M2
tion (14).

Of course, the singularities will not occur in a physical Changing the order of integration on the LHS leads to

system as the crack tip cannot go to an infinite velocity. As
the crack tip accelerates to a velocity which is no longer z  dr
small compared to the sound wave velocity, the present d @
theory has to be modified to include elastodynamic effects. % ¢
We stress, however, that this does not invalidate the present 3 \m y dz

— *

_<2¢To) ‘ Lo Zm2(y—z)t-m2’ 20

fy dz
¢ (Z— g)mIZ(y_Z)l—m/Z

treatment, which should be understood as applying to the
early stage of the quasistatic crack growth. Here, the term
“quasistatic” refers to the approximation in which the finite-
ness of the sound wave velocity is neglected. The growth oivhere we have used the equality of the triangigdzfﬁodg
a crack can thus be classified into two regimes: the first early_ [2d¢f¥dz.

one described here is controlled by the physics of quasistatic %0~ £ .

damage; the second regime is fully dynamical and the crack The integral in the square brackets on the LHS Of(E_Q)
tip velocity saturates at a velocity of the order of the sound*@" be expressed through the Euler beta fundéita, b):
wave velocity. This classification is well known and has for

instance been used successfully in the Ruina-Dieterich fy dz

theory of frictional rupturd27]. {(z—)M2(y—z)t-m2

IV. NONLINEAR DAMAGE LAW WITH FINITE-TIME F( 1- T)F(T)
SINGULARITY: 0 <m<2 =B(1— m T) - 2/ \2)__ "™
o ) _ . 2'2 m m ) T
A. Derivation of the differential equation F( 1-—+ —) Sln< m—)
for the crack dynamics 2 2 2
The case where€OAm< 2 can be similarly treated and our (21

results here extend those of Zobfik®] and Rabotnoy20].
Our results retrieve those found [ia8], obtained in the con-
text of crack growth due to electromigration. For complete-
ness and coherence in notation, we briefly present the w JZ d¢ dr _ (i)m . Jy dz
method and the results which are more focused on the finite- sin( o 77) o d¢ 20 2o ZV3(y—z)t—m2’

We thus obtain

Z,
time singularity. 2

For simplicity, we imposer, constant. Integrating E@3) (22)

and applying the self-consistent conditiofsand (ii) given
at the end of Sec. Il leads to After differentiation with respect ta, we get

t [200\™ a(t)|™

Jd7<% E w oz =45 4D sin mo
0 {la(t)]*—[a(n)]*} dr (3 \™ 2) d (2 d¢
. . i d_Z_(ZTC'O d ar d_ZJZO é«m/Z(Z_é«)lfmlz'

We set again the change of variablg€ and changing the (23

variable of integration fromr to { gives

B. Asymptotic solution close to the finite-time singularity

z  (dr/dg) 3 \Md* _ _
J dg”—m/z=<2—> " (18 The solution of Eq(23) can be obtained for large crack
 [z-{] 9o/ z sizesa(t), i.e., largez In this goal, we replace the ternz (
—)*"™2 in the integral on the RHS of E423) by z1~™?,
This equation(7) is again an Abel equation with index neglecting compared ta. Intuitively, this is justified over
—m/2 if 0<m<2. the whole domain of integration because the contribution
In order to transform it into differential form, we could from the domain wheré is not negligible compared tis
use the formalism of Abel operators. We choose a mordinite, since the power £ m/2 is less than 1, corresponding
transparent and direct approach which is closely relatedo an integrable singularity.
First, we multiply both sides of Eq18) by 1/(y—z)1 ™2 With this approximation, the integral can be performed,
and integrate ovez from z; to y: the derivative taken, and after inverting, we get
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3
200

Usinga= \Jz as defined in Eq(6), we obtain

_ T tween the casa®<<2 andm=2 is that we need to regularize
m sm(mg) dz the infinity in the expressiof21) by introducing some sort
d* ——— —:zal+m/222*m/2, (24 of dimensionless cutoff. The important physical message is
m dr that the regime where=2 is controlled by a novel physical
parameter, which we identify as a length scale associated
with the damage law. In other words, the physics of the
rupture is inherently controlled by the choice of the cutoff,

a(t)= a , (25) i.e., by the existence of a microscopic length scale. We could
t\# summarize the situation by saying that there is no continuous
(1_ E) limit to the theory form=2. This is similar to previous ob-
servations obtained in a dynamical theory of rupture front
where propagatiorf30]. We now present two ways for regularizing
the divergence and thus for obtaining a meaningful theory of
5 sir( mz) rupture.
3\ 2
te= (ZT,.O “m(2—-m) (26) A Regularization by damage saturation at a microscopic scale
Before describing the physical content of the regulariza-
and tion we propose, we need to express the problem in a more
1 manageable mathematical form. Since the culprit for the di-
B= . (27)  vergence is the integrdRl) and the divergence occurs for
2-m {—z", we introduce the variable
Note that the exact asymptoti¢d5) of the casem=1 z—¢
previously solved exactly is recovered, with the correct ex- Z= H (28)

ponent3(m=1)=1 and a rather good approximation of the

critical t.: while the exact value ig,=3d* /30, expression and rewrite Eq(21) as

(26) predicts (2/m)t., i.e., 36% lower. The critical timg, as

a function of m is smooth with no accident or divergence y dz

over the whole interval. In particular, the estimated critical f M2 1-mi2

time for the limitm—2~ is equal to @* /40, (2= y-2)
In contrast, the exponert increases fromg(m—0%)

=1/2 to + as the damage exponemtvaries from O to 2.  which makes it apparent that the divergence is dug t8'2

The limit B(m—0%)=1/2 can be rationalized as follows. at the lower bound 0. It is thus natural to regularize by in-

This limit m— 0™ corresponds to the situation where damagetroducing a dimensionless cutoéf>0 and replace Eq29)

becomes independent of stress. As a consequence, reintigy

ducing some heterogeneity for instance on the preexisting

damage, rupture is then equivalent to percolation, as the parts

of the system that break as a function of time are determined

by the damage accumulating at the same rate for all point but

with different random initial values. In mean-field percola- The functionb(m,e) is such that

tion [29] obtained through the consideration of one-

dimensional percolating paths_ consistent with the present Iimﬁo+b(m,e)=B(l—T,T>, for 0<m<2,

one-crack geometry, the elastic energy under constant load 2’2

diverges ast(—t) ! where 1 is the mean-field value of the (3D

exponent for conductivitywhich is the same as elasticity in . . )

the scalar mode Il version of mechanical deformations used/here the beta functioB(1—m/2m/2) has been defined in

here. Since the elastic energy is proportional to the square oEd. (21).

— fldzzfmIZ(l_Z)mQ*l
0
(29)

fleZ‘m’Z(l—Z)m’z‘lzb(m,e). (30)

the crack length, we get the predictia(t)~(t,—t) =2 In constrast, we have
This reasoning holds if the exponent is a smooth function of
disorder and geometrffhe present case studied here is a the b
; . m,e)~——-—, for m>2, 32
zero-disorder limit (m,e) (m-2)72 (32
The divergence of8 at m=2 signals a change of regime
that we study in the next section. and
V. NONLINEAR DAMAGE LAW WITH ~m=2 b(m,e)~|n%, for m=2, (33)

For m=2, the integrals in Eq917) and (18) diverge at
a(7)=a(t), since the negative power with exponent2 is  showing that the divergence of the integ(ab) is now en-
no longer integrable. Technically, the main difference be-capsulated in the dependence of the fabian, €) on €. This
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regularization scheme thus relies on the existence of the defi{ (z/z,)— 1732 3[(2/25)— 1]¥2+ 3 tam 1{[(2/20) _ 1]1/2}

nite integral(30), by analogy with the casm<?2.
Using the regularizatioi30), we obtain

dT_( 3)m d* d [z d¢
a2\ 20, b(me) d—ZLO—gm/Z(y_ol_m/z’ (34)

which extends Eq(11) to the regimem=2. Its formal solu-

tion obtained in implicit form is

3 )m d* 2 d (v d§
20,/ b(m,e) ZO“K/L}W'
(39

This regularization scheme allows us to obtain exact solupjore generally, at large times,

tions for integem’s. We examine the solutions fon=2, 3,
4, and 5 and then the general case. Fot 2, we have the

expression for all times given by

Z,(t) = zge""e?, (36)
where
) _9d* 1 3
=252 1" (37
In—
€

For m=3, z5(t) is the solution to

(z/zo)—1—tan‘1[\/(z/zo)—1]=ti, (38)
€,3
where

27d*

tog=—p e (39
3 80’3\/2_0
For large times, we get
t 2
zg(t)~zo(t—) . (40)
€,3
Form=4, z,(t) is the solution to
t
—In(z/zo)+(z/zo)—1=t—, (41
€,4
where
81d*
t6'4:r60'46' (42

For large times, we get

t
Z4(t)~zoa- (43

For m=5, z5(t) is the solution to

= ! 44
T (44)
where
24d*
€5 Wc‘w- (49)
For large times, we get
t 2/3
te,5
t | 2/(m-2)
zm<t>~zo(t ) , (47)
€,m
t | Um-2)
am(t)~ao| ¢ ) : (48)
€,m
where
te mxelM 22~ ! : (49
em b(m,e)

From these solutions, it is apparent that the dynam(t¥
=[a(t)]? is controlled by the characteristic timg,, defined
in Eqg. (49). Note that the inverse dependencetpf, on
b(m,€) is obvious from the expressiof35). As the cutoff
€—0, t.n—0 and the global rupture occurs in vanishing
time. The physical explanation of this phenomenon is as fol-
lows. Form=2, the driving forces™ of the damage law3)
is so strong close to and at the crack tip that it takes effec-
tively zero time for a point to be brought to the damage
threshold. To see this, let us truncate the integral in(Ed).
such that the upper bound is changed froto t— ». The
divergence of the integral at the crack tip means that the
contribution to the cumulative damage occurring in the time
interval fromt— % to t is larger (actually infinitely larger
than the contribution from time O to timte- ». This means
that the progressive damage leading to the acceleration of
a(t) for m<2 is replaced by an infinite velocity as soon as
we start from a finite crack and do not introduce the finite
cutoff length.

This clarifies the physical meaning of the cuteftiefined
in Eq.(30). A nonzeroe means that the integral ovéiin Eq.
(29) does not go all the way up to Translated in terms of
physical distances, it means that the integraJ on the LHS
of Eq. (18) also does not go all the way up mPhysically,
this means that the damage on a given point ahead of the
crack tip reaches the critical valuE before the crack tip
reaches that point. The valu# is no longer the rupture
threshold but a saturation value. The crack tip dynamics is
now determined by the condition that the damage at any
given pointy reaches this saturation vald& when the crack
tip is at a fixed distance e from y. This condition embodies
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the existence of a microscopic length scale such that the  tip. Thus, for timesr up tot(t), the damage at a fixed point
damage is no longer defined as smaller scales. Note, hoWrat will be reached by the crack tip at tintds growing

e;]/er, th"fﬂ the regt;llarizaﬁor? P_erf(;_fmedl"? E80) h?s bde_en under the influence of the stress field created by the crack.
chosen for its mathematical simplicity. It is not related in angor simot (1) up to timet, the damage is increasing lin-

obvious way to a clearly defined physical mechanism, Suc%arly with time, since the stress is assumed constant and

as plasticity, creep, or time delays. It only qualitatively em- . . .
bodies the existence of a finite length scale. This is the re gqual to the value it reaches at trg(t). The saturation

son for our consideration of more physically motivated buttiMe t/(t) is determined by the equation
more complex mathematically regularization schemes stud-
ied below.

The main result of our analysis is that the Characteristiqn this version of the regularized theory, expressiam) is
time scalet_ , of the crack dynamics is controlled by the changed into '
microscopic length scale. The theory has thus fundamentally

a(t)y—a(t,)=/. (50

no continuous limit. It is one of several interesting and im- 200\ ™ [a(t)]™
portant examples in physics where the macroscopic physics f 3 5 S
is completely controlled by the microscopic physitse ul- 0 {la(t)]*—[a(n)]}

problems: for instance, in correlation functions in two-
dimensional system&1] and in nonlinear diffusion33] as
well as in quantum electrodynamif32]. Note, however, the
difference between the last two examples and the formewheret, is the time at which the crack tip is at the distance
ones: in our rupture problem as well as in the case of corre? from the position it will have at time [see Eq(50)].
lation functions in 2D systems, the ultraviolet cutoff appears Note that we now have two equations for two unknown
naturally, as an atomic distance, while in the last two case(t) anda(t,). The second term on the LHS of E(h1)
there is no meaningful natural cutoff, and hence the necessi§xpresses the linear increase in damage ftorto t under
to “cover up” divergencies by the “renormalization” pro- the saturated stress. In this modéljs fixed andt, adjusts
cedure[32]. itself. The value of the saturated stress is not a constant but
increases as the crack gets larger and larger, since it corre-
B. Regularization by stress saturation at a microscopic scale  sponds to the value at a fixed distan¢efrom the tip of a
growing crack.
The change of variable®) and changing the variable of
'Qtegration fromr to ¢ give

3

traviolet cutoff. This situation is found in many physical 25\ M [a(t)]™
( ") < (t—t,)=d*, (51

2a(t)—/)/1™?

The previous regularization scheme invokes a saturatio
of the damage at a microscopic lengtla. Alternatively, the
saturation can occur on the stress field, whose mathematic
divergence is bound to be rounded off at atomic scales. This
provides another regularization scheme. To implement it, we J(ﬁ*/)zd (dr/d?) N t-t,
use the continuous expressith for all distances from the Z [z2—(]™2 [(2\/2_ /2
crack tip down to a regularization length such that, for
distances from the crack tip from 0 t6, the stress is con- 3
stant equal tar(A given by Eq.(4) with y=a(t) + /. This :(ZT,O
regularization is standard in the theory of damage and of
plasticity. The idea is that a sufficiently large damage exerty ote thatt
a feedback on the stress field which then departs from its
damage-free continuous expressi@. This extension to dr
Rabotnov’s treatment provides a natural way for constructing 7(z)— 1(Nz—=/)P)~2/\z —
a self-consistent theory of damage: not only does rupture dz
occur by the cumulative effect of damage, damage has also ) o
the effect of smoothing out the mathematical singularity atThe integral on the LHS of Eq52) is analyzed similarly to
the crack tip. The cutoft’ has the physical meaning of a the previous casel8). We multiply the integral by 1§
so-called process zone or damage zone and its introduction is2)*~™? and integrate ovez from (Vzo+/)? to y:
fully consistent with the dynamical damage 1d@). How-
ever, as we have seen above, for a damage law with an y (Vz—1)? (d7/d?)
exponent B<m< 2, the resulting dynamics becomes insensi- f( dz Lo (z— §)™2(y—z)Lt-m2
tive to the existence of a microscopic length scale in the limit
where it is small. In this sense, the regime <2 is more (y-n2 dr
universal and has a continuous limit. —f d_g

We propose two models that implement these ideas.

m A%

with Vz—a(t,)=/. (52)

Zm/2

—t, can also be written

+0(7%. (53

Vio+/)?

Jy dz
(\‘“Z'F/)Z(Z_ g)mIZ(y_ Z)17m/2
(54

)

1. Saturation of the stress at a fixed distance to the crack tip

The regularization scheme used here is such that the streé¢ere we have used the equality of the triangle

F_ 2 T 2
is assumed to saturate at a fixed distaricéom the crack f{\fz—ov)zdzf%z Vdg= A gy edz
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The integral in the brackets on the RHS is the same as iwith
Eq. (30), which defines the functiob(m, e) with

(We+?-¢ 2/t
y—=¢ y—¢°

@ a(t) B
(55) 3 {[a(h)]?—[a(t,)]}*/?

which is the condition that the stress saturates. It gives

O max» (61)

€)=

Note thate({) is now a function ofZ.

Using Egs.(53) and (54), expression(52) gives [a(t,)]?=[a(t)]?(1—A?), (62
(y-n2 dr where
f " dg—b(m,e(2)
Zy dg 20'0
A= . (63
fy 2/\/2 dr 30 max
+ dz —
(Vzo+ )% (y—2z)2™2[(2 \/2_ ) /1™m2 dz The equation(60) governing the dynamics of the crack tip

can thus be written

(3 d*)mJ‘y dZ -
= —. 56 200 [(1-Ad)z d7/d¢ , d7
20'0 (\/%Jr/)ng/Z(y_g)l m/2 T . dg(z_—w+[gmaX]mA Zd—Z:d*, (64)
Si
nee where we have used the expansion
2/\/2 1-m/2
m2—-1 d
bm, ()= 1le “( y—z) I w(2)- (1A D~AZ | +O(AY), (69
z

we see that the first integral of the LHS of E§6) is neg-

ligible compared to the second integral of the LHS of Eq.valid in the interesting regime ya,e oo giving A<1.

(56) in the limit of large cracks, i.e., large Neglecting/ ~ The second term on the LHS of E(64) dominates the
compared toyz in the denominator of the integrant of the first integral for largez, as can be checkeal posteriori For
second integral of Eq56) and equating this second integral large crack sizes, the expressi@9) can thus be simplified

to the RHS gives the following equation: Into
%x\ M dT
d_q-:(z/)mIZ—j_(‘?’\/d—) 1 . (58) [Uma)(]mAZZd_Z:d*v (66)
dz 200 | FMA4+1/2
h lution i
Form>2, m/4+3>1 and the solution of Eq58) is Whose solution 15
a(t)=age'’, (67)
a(t)e (t—)2/m2) 59 Wwhere

wheret, is determined from the initial size of the crack. The . 2d* 9d* -
finite-time singularity results from the ever-increasing stress O_AZ[Umax]m - ZO'S[O'max]m_z. (68)

field at the fixed distancg from the crack tip. This solution

(59) is qualitatively different from the solutio(®5) found in

the regimem<2 as Eq.(59) depends in a fundamental way VI. BEYOND THE MEAN-FIELD VERSION
upon the existence of the regularization scéle BY FUNCTIONAL RENORMALIZATION

Let us restrict our discussion to the case=1 for which
we have the complete analytical solution for the crack dy-
An alternative prescription for the regularization is that namics. The solutiori16) with its asymptotic behavio15)
the stress saturates at a constant vatglg,. This is in con- is not physically reasonable, as the crack reaches an infinite
strast with the previous regularization scheme where théength in a finite time. Thet{—t) ! singularity has been
stress saturates at a value reached at a constant distance, fioisnd to appear as the consequence of a geometric nonlin-
value thus increasing with the crack length. Expressi&l)  earity on an otherwise linearized mechanical problem. In re-

2. Saturation by fixing an absolute maximum stress

is then changed into ality, nonlinearity, viscosity, feedback, and spatial heteroge-
neity of material properties and of cracking should modify
v [200\" [a(t)]™ " the singularity. In addition, the main simplification in the
fo dr| =3~ ([a(h]>—[a(n)]3™2 Flomad "(t=1,) previous approach is to neglect the impact of damage on the
elastic coefficients of the material, thus leading to a stress
=d*, (60) field created by the crack which is identical to the field that
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the samestatic crack would generate in an undamaged ma-+a,;x+a+ax’+ - - - +axX, the renormalized expression is

terial. Our hypothesis is that such modification can be deas follows. With the use of the notation

duced by a smooth or regular deformation of the solution

previously obtained. bi—a. b _ & K
In this goal, we propose to apply the Yukalov-Gluzman 0o Pk gy

functional renormalization methd®4] to the series expan-

sion of the solutior(16) to obtain the renormalized law that We obtain thebootstrap self-similar approximanp to order

accounts for these effects in a generic sense. Let us fird

consider the asymptotic power law singularifyb) F4(X) = by explb X expbox exl - - - by x exp(b T} - -)
(72)

=12,..., (72)

2a,

a(t)=—(1—x)"1, where x=t/t,. (69

T introduced by Yukalov and Gluzmdi4].
Let us now apply this result to the ca&#) where all the
The powers<" in the expansion coefficientsa, are equal to 1. The corresponding renormal-
ized approximant replacing the initial input 1£X) of the

expansion reads

F(x)=exp{xexdx- - -expx)]---}. (73

2a,
a(t)=7(1+x+x2+x3+...) (70)

may be considered as hidden free parameters. Indeed, let
multiply the expansion by®. We then have a trial expansion ; ! .

for the solution. Fors=0, we return to the regular expan- ?heglr:eegul;l;ir:)crflcr)gl.a;li'gndeterm|ne it, we note tifefx) obeys
sion. Such multiplication can be applied repeatedly, for in-
stance, using the functional renormalization metligd]. Frs1(X) = exg XF(X)]. (74)

The idea behind the introduction of the multiplicatit@n-

trol) function such as the powsiin x® is to deform smoothly  The fixed point to which these series of approximants con-
the initial functional space of the expressiaft) taken as an verge is thus a solution of

approximation to be improved. The condition for the im-

provement is to obtain a faster and better controlled conver- F=expxF), (79
gence in the space of the modified functions upon addition of . - .
successive terms” in the expansion. By this procedure, the r;otlng thatF = ma/2a,. The limit F.(x) exists for —e<x
dominant poles are eliminated or weakened as a result of & ! . .
sequential reduction of stress level at each step of the resum- The flxed_pomﬂ:(x) can be showii26] to be the solution
mation procedure. This corresponds to utilizing the informa-Cf e equation
tion from the initial series pertaining to the times preceding dF F2
the critical timet,, where the level of damage is lower. — =
Thus, the renormalization procedure is performing a map- dx 1-xF
pir!g from the.dynamics at early ti'me fqr from the cri'ti.cal Searching for a solution in the form of a Taylor series
point to later times closer to the critical time. The stabiliza-

tion stems from the fact that the information contained in the *

initial series related to times close tois minimized on the F(x)= E yoX",  yo=1, (77
basis that it has an overly destabilizing effect in the descrip- n=0

tion and should be weighted less than the information al e get

'ﬁiis embedded exponential series converges to a well-

(76)

earlier times.
At each step of the functional renormalization corre- (n+1)" 1
sponding to the addition of a new term, we select the renor- Y= (78)

malized function according to the principle of minimum “lo-

cal” multiplier, i.e., maximum stability on each substep of sincent~nhe", y,~e" for large n and the generic term
the renormalization procedure. Since these multipliers arg xn jn the serieg77) is proportional to €X)". This shows
proportional to the derivativela/dt [34], the principle of  that the radius of convergence of the selig® is 1/e.
minimal multiplier implies a selection of the real-time trajec-  F(x) has a singularity wher approaches &/from below,

stresses In other words, this procedure amounts to improv-

ing the theory by allowing the crack to organize and develop F(X)=,_.1e(1— J2e%21/e—x). (79

so as to choose the most favorable path or dynamics. It can

be shown[34] that, at each step, the choice of a formally Thus, the self-similar functional renormalization has trans-

infinite exponents corresponds to the minimal multiplier at formed a pole(divergence ofa) at t=t. into a square root

arbitrary time. singularity (finite a) at a smallett=t./e. In this renormal-
The functional form of a superexponential solution is se-ized theory, the crack accelerates up to the tipke as

lected by this procedure: starting from an expansion Ilwhich time its velocity diverges, while the crack is still fi-

066129-9



S. GLUZMAN AND D. SORNETTE PHYSICAL REVIEW E63 066129

nite. This announces the global breakdown. It is interestingng the critical timet. with respect to the order of the poly-
that the exponent 1/2 is close to the value found for acoustioomials and as a function of noise, are reported in the
emissions in experimen({8,10,12,13. companion pap€r35].

We can offer the following physical intuition for this
transformation from the solutio15 with =1 to B VIl. CONCLUDING REMARKS

= —1/2. As the material becomes more and more damaged, Two main regimes have been found for the growth of a
the ulterior functional dependence of damage as a function Gfrack in a medium obeying the damage la\id)/dt= o™
applied stress is modified. Actually, the series of functiona[Eq_ (3)], whereo is the local stress. ForOm<2, a preex-
renormalization amounts to effectively evolving or renormal-jsting crack grows to infinity in finite time and the diver-
izing the damage lawB) into a succession of effective laws gence occurs as a power-law finite-time singularity. For
captured by the sequence of approximants, each approximasi2, the solution exists for all times but the characteristic
order corresponding to an increase in the overall damage afme scale of the crack growth is an increasing function of a
the material. Here, we have a mapping between a measure pficroscopic length scale, which is essential for regularizing
evolution via the cumulative damage, i.e., a measure ofhe otherwise ill-defined problem. This microscopic length
passed time, and the order of the approximants, and thus tiale embodies the physical mechari®nby which the

distance to the fixed point in the functional space. mathematical stress singularity at the crack tip of a perfectly
Consider now the general caaét)~ (1—x) #. Expand- sharp crack is rounded off. We have examined two main
ing in power series, we get scenarios, a damage-limited rupture and a stress-limited rup-
ture.
—p_ n The remarkable behavior of this simple model results
(1=x) B_go anX" B0 from the form of the irreversible damage law, in particular
from the fact that any nonvanishing stress increases the dam-
where age. Damage at any point is thus a kind of ever-increasing
counter of the history of the stress on that point. This feature
a :(n+,8— 1! 81) prevents the existence of stationary solutions of cracks
" onl(B-1)! propagating at constant velocities. In contrast, we only ob-

o ) tain “runaways.”
The Yukalov-Gluzman renormalization scheme gives the su-  Stationary solutions can be obtained in simple generaliza-
perexponentia(72) with coefficientsb,, given by tions of the damage la¥8), for instance with a stress thresh-
_ old below which no damage occurs or with a healing or
ba=(n+8=1)/n. (82) work-hardening term, allowing recovery of the material and
a decrease of the damage when the stress is low. Such situ-

Sinceb,—1 for largen for any B, the fixed point of the . ! , Lo . .
approximants is controlled by the same finite square-root sin2ions have been investigated in discrete two-dimensional

gularity of the type(79). Thus, the functional renormaliza- Models[16]
tion maps all finite-time singularities with different exponent

B on the same universal laa(t) =a(t.;) — Cyt.—t, whereC

is a constant depending in particular gn Tests of exten- This work was partially supported by NSF-DMR99-
sions of this scheme for predicting rupture, i.e., for predict-71475 and by the James S. McDonnell Foundation.

ACKNOWLEDGMENTS

[1] Fracture, edited by H. Liebowitz(Academic, New York, [9] J. V. Andersen, D. Sornette, and K.-T. Leung, Phys. Rev. Lett.

1984, Vols. |-VII. 78, 2140(1997.

[2] Statistical Models for the Fracture of Disordered Meded-  [10] A. Garcimartin, A. Guarino, L. Bellon, and S. Ciliberto, Phys.
ited by H. J. Herrmann and S. RouElsevier, Amsterdam, Rev. Lett.79, 3202(1997; A. Guarino, A. Garcimartin, and S.
1990. Ciliberto, Eur. Phys. J. B, 13 (1998; A. Guarino, S. Cilib-

[3] J.-C. Anifrani, C. Le Floc’h, D. Sornette, and B. Souillard, J. erto, and A. Garcimartin, Europhys. Le#7, 456 (1999.

Phys. 15, 631(1995. [11] D. Sornette and J. V. Andersen, Eur. Phys. 1,B53(1998.

[4] D. Sornette and C. G. Sammis, J. Phys, 607 (1995. [12] J.-C. Anifrani, C. Le Floc’h, and D. Sornette, Cor@dndus-

[5] W. I. Newman, D. L. Turcotte, and A. M. Gabrielov, Phys. triel 220, 43 (1999.

Rev. E52, 4827(1995. [13] A. Johansen and D. Sornette, Eur. Phys. 183163 (2000.

[6] D. Sornette and C. Vanneste, Phys. Rev. L&#.612(1992); [14] B. Voight, Science&43 200(1989; Nature(London 332 125
C. Vanneste and D. Sornette, J. Phy<, 11621 (1992; D. (1988; B. Voight and R. R. Corneliugbid. 350, 695(1991.
Sornette, C. Vanneste, and L. Knopoff, Phys. Revl5A8351  [15] Damage Mechanics in Engineering Materiaédited by G. Z.
(1992. Voyiadjis, J.-W. Woody Ju, and J.-L. ChabockElsevier,

[7] M. Sahimi and S. Arbabi, Phys. Rev. Left7, 3689(1996. Amsterdam, 1998 J. Lemaitre and J.-L. Chabochéechan-

[8] L. Lamaignee, F. Carmona, and D. Sornette, Phys. Rev. Lett. ics of Solid Materials(Cambridge University Press, Cam-
77, 2738(1996; Physica A241, 328(1997). bridge, England, 1990J. F. Maire and J.-L. Chaboche, Aero-

066129-10



SELF-CONSISTENT THEORY OF RUPTURE BY . ..

PHYSICAL REVIEW & 066129

space Sci. Technol, 247 (1997). [26] C. Bender S. A. Orszaghdvanced Mathematical Methods for

[16] D. Sornette and C. Vanneste, Phys. Re60E4327(1994); D.
Sornette, I. Dornic, A. Johansen, L. Knopoff, A. Sornette, and

Scientists and Enginee(®cGraw-Hill, New York, 1978, p.
147.

C. Vanneste, in Proceedings du TroisSlee Seninaire  [27] J. H. Dieterich, Tectonophysicl1, 115(1992.
Rhodanien de Physique, “Physics of Complexity,” 1968- [28] R. M. Bradley, M. Mahadevan, and K. Wu, Philos. Mag7g

ited by S. Ciliberto, T. Dauxois, and M. Drdgditions Fron-

257 (1999.

tieres, Gif-sur-Yvette, 1995 pp. 137-152. [29] D. Stauffer and A. Aharony,ntroduction to Percolation

[17] W. Yang, J. Mech. Phys. Solic8, 725(1990.

Theory 2nd ed.(Taylor & Francis, London, 1994

[18] W. Benz and E. Asphaug, Comput. Phys. Commgif. 253 [30] C. R. Myers and J. S. Langer, Phys. Rev4E 3048(1993.
(1995. [31] A. Z. Patashinski and V. L. Pokrovsktjuctuational Theory of

[19] A. I. Zobnin, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela53

Phase TransitiongNauka, Moscow, 1982

(1974). [32] S. Weinberg,;The Quantum Theory of Field€ambridge Uni-

[20] Yu. N. Rabotnov,Elements of Hereditary Solid Mechanics

versity Press, Cambridge, England, 2D00

(Mir, Moscow, 1980. [33] N. Goldenfeld, O. Martin, and F. Liu, Phys. Rev. Le®4,

[21] D. Krajcinovic, Damage Mechani¢sNorth-Holland Series in
Applied Mathematics and Mechani¢g&lsevier, Amsterdam,
1996.

[22] D. Vandembroucq and S. Roux, Europhys. Le#, 523
(1997; Phys. Rev. B55, 6171(1997); 55, 6186(1997.

1361(1990; L. Y. Chen, N. Goldenfeld, and Y. Oono, Phys.
Rev. A 44, 6544 (1991); N. Goldenfeld,Lectures on Phase
Transitions and the Renormalization Grqoufsdvanced Book
Program(Addison-Wesley, Reading, MA, 1982.. Y. Chen,
N. Goldenfeld, and Y. Oono, Phys. Rev.58, 376 (1996.

[23] L. B. Freund,Dynamic Fracture Mechanic€Cambridge Uni-  [34] S. Gluzman and V. I. Yukalov, Phys. Rev.55, 3983(1997);

versity Press, Cambridge, England, 1890
[24] R. M. Bradley and K. Wu, J. Phys. 27, 327 (1994); K. Wu

V. |l. Yukalov and S. Gluzmaribid. 55, 6552(1997); 58, 1359
(1998.

and R. M. Bradley, Phys. Rev. B0, 12 468(1994). [35] S. Gluzman, J. V. Andersen, and D. Sornetfinctional

[25] R. Hilfer, in Scale Invariance and Beyonddited by B. Du-
brulle, F. Graner, and D. SornetDP Sciences and Springer,
Berlin, 1997.

066129-11

Renormalization Prediction of Ruptyr€omputational Seis-
mology Vol. 32, edited by A. Levshin, G. Molchan, and B.
Naimark (GEOS, Moscow, 2001



